Processing math: 39%

latex and mathjax

Monday, January 20, 2014

Non-Conservative Behaviour of Static Electric Field

Inspecting work done over a loop in the field of a line charge by a point charge.







Theory

 Point charge "+q" travels in the electric field of line charge "MN" having linear charge density "+λ" in a square loop "ABCDA".

E=λ4πϵ0r[sinα+sinβ]E=λ4πϵ0r[cosαcosβ]

Work done in AB



As movement is done against E only, we do not consider the presense of E.
E=λ4πϵ0r1[r1(x)2+(r1)2r1(Lx)2+(r1)2]
WAB=L20(qE(ˆi))(dx(ˆi))WAB=L20qEdx
WAB=L20qλ4πϵ0[1(x)2+(r1)21(Lx)2+(r1)2].dxWAB=qλ4πϵ0[ln|(x)2+(r1)2+x|+ln|(Lx)2+(r1)2+Lx|]L20WAB=qλ4πϵ0[ln|((x)2+(r1)2+x)((Lx)2+(r1)2+Lx)|]L20WAB=qλ4πϵ0[ln|((L2)2+(r1)2+L2)2((L)2+(r1)2+L)(r1)|]WAB=qλ4πϵ0[ln|((L)2+(r1)2+L)(r1)((L2)2+(r1)2+L2)2|]


Work done in BC



As movement is done against E only, we do not consider the presense of E.

E=λ4πϵ0r[L2(L2)2+(r)2+L2(L2)2+(r)2]E=λL4πϵ0[1r(L2)2+(r)2]
WBC=r2r1(qE(ˆj))(dr(ˆj))WBC=r2r1qEdr
WBC=r2r1qλL4πϵ0[1r(L2)2+(r)2].drW_{BC} = \frac{q\lambda\require{cancel}\cancel{L}}{4\pi\epsilon_0}\frac{1}{2\require{cancel}\cancel{L}}[ln|\frac{\sqrt{(\frac{L}{2})^2+(r)^2}-\frac{L}{2}}{\sqrt{(\frac{L}{2})^2+(r)^2}+\frac{L}{2}}|]_{r_1}^{r_2}W_{BC} = \frac{q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}-(\frac{L}{2}))(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(\sqrt{(\frac{L}{2})^2+(r_1)^2}-(\frac{L}{2}))}|]W_{BC} = \frac{q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))^2(r_2)^2}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))^2(r_1)^2}|]W_{BC} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))(r_2)}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(r_1)}|]

Work done in C \rightarrow D



As movement is done against E_{\parallel} only, we do not consider the presense of E_{\bot}.

E_{\parallel} = \frac{\lambda}{4\pi\epsilon_0r_2} [\frac{r_2}{\sqrt{(x)^2+(r_2)^2}} - \frac{r_2}{\sqrt{(L-x)^2+(r_2)^2}}]
W_{CD} = \int_{\frac{L}{2}}^0 (qE_{\parallel}(-\hat{i})) \cdot (dx(\hat{i}))W_{CD} = \int_{\frac{L}{2}}^0 -qE_{\parallel}dxW_{CD} = \int_0^{\frac{L}{2}} qE_{\parallel}dx
W_{CD} = \int_0^{\frac{L}{2}} \frac{q\lambda}{4\pi\epsilon_0} [\frac{1}{\sqrt{(x)^2+(r_2)^2}} - \frac{1}{\sqrt{(L-x)^2+(r_2)^2}}].dxW_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ ln|\sqrt{(x)^2+(r_2)^2}+x| +ln|\sqrt{(L-x)^2+(r_2)^2}+L-x|]_0^{\frac{L}{2}}W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|(\sqrt{(x)^2+(r_2)^2}+x)(\sqrt{(L-x)^2+(r_2)^2}+L-x)|]_0^{\frac{L}{2}}W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]


Work done in D \rightarrow A



As movement is done against E_{\bot} only, we do not consider the presense of E_{\parallel}.

E_{\bot} = \frac{\lambda}{4\pi\epsilon_0r} [0+\frac{L}{\sqrt{(L)^2+(r)^2}}]E_{\bot} = \frac{\lambda L}{4\pi\epsilon_0} [ \frac{1}{r\sqrt{(L)^2+(r)^2}}]
W_{DA} = \int_{r_2}^{r_1} (qE_{\bot}(\hat{j}))\cdot(dr(\hat{j})W_{DA} = \int_{r_1}^{r_2} -qE_{\bot}dr
W_{DA} = \int_{r_1}^{r_2} \frac{-q\lambda L}{4\pi\epsilon_0} [\frac{1}{r\sqrt{(L)^2+(r)^2}}].drW_{DA} = \frac{-q\lambda\require{cancel}\cancel{L}}{4\pi\epsilon_0}\frac{1}{2\require{cancel}\cancel{L}}[ln|\frac{\sqrt{(L)^2+(r)^2}-L}{\sqrt{(\frac{L}{2})^2+(r)^2}+L}|]_{r_1}^{r_2}W_{DA} = \frac{-q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}-(L))(\sqrt{(L)^2+(r_1)^2}+(L))}{(\sqrt{(L)^2+(r_2)^2}+(L))(\sqrt{(L)^2+(r_1)^2}-(L))}|]W_{DA} = \frac{-q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_1)^2}+(L))^2(r_2)^2}{(\sqrt{(L)^2+(r_2)^2}+(L))^2(r_1)^2}|]W_{DA} = \frac{-q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}|]W_{DA} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}|]

Adding Work

W=W_{AB}+W_{BC}+W_{CD}+W_{DA}
W_{AB} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(L)^2+(r_1)^2}+L)(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})^2}|]W_{BC} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))(r_2)}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(r_1)}|]W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]W_{DA} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}|]
W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{\require{cancel}\cancel{(\sqrt{(L)^2+(r_1)^2}+L)}\require{cancel}\cancel{(r_1)}\require{cancel}\cancel{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))}\require{cancel}\cancel{(r_2)}(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^{\require{cancel}\cancel{2}1}\require{cancel}\cancel{(\sqrt{(L)^2+(r_2)^2}+(L))}(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})^{\require{cancel}\cancel{2}}\require{cancel}\cancel{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))}\require{cancel}\cancel{(r_1)}\require{cancel}\cancel{(\sqrt{(L)^2+(r_2)^2}+L)}\require{cancel}\cancel{(r_2)}\require{cancel}\cancel{(\sqrt{(L)^2+(r_1)^2}+(L))}(r_2)}|]W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})(r_2)}|]W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2r_2})^2+1}+\frac{L}{2r_2})}{(\sqrt{(\frac{L}{2r_1})^2+1}+\frac{L}{2r_1})}|]

Conclusion

So if r_1 \neq r_2, then W \neq 0 which indicates that even static electric field behaves non-conservatively in some cases.

This phenomenon is extremely easy to show in hypothetical electric fields as I have shown here.

No comments:

Post a Comment