Inspecting work done over a loop in the field of a line charge by a point charge.


Theory
Point charge "+q" travels in the electric field of line charge "MN" having linear charge density "+λ" in a square loop "ABCDA".
E⊥=λ4πϵ0r[sinα+sinβ]E∥=λ4πϵ0r[cosα−cosβ]
Work done in A→B
As movement is done against E∥ only, we do not consider the presense of E⊥.
E∥=λ4πϵ0r1[r1√(x)2+(r1)2−r1√(L−x)2+(r1)2]
WAB=∫L20(qE∥(−ˆi))⋅(dx(ˆi))WAB=∫L20−qE∥dx
WAB=∫L20−qλ4πϵ0[1√(x)2+(r1)2−1√(L−x)2+(r1)2].dxWAB=−qλ4πϵ0[ln|√(x)2+(r1)2+x|+ln|√(L−x)2+(r1)2+L−x|]L20WAB=−qλ4πϵ0[ln|(√(x)2+(r1)2+x)(√(L−x)2+(r1)2+L−x)|]L20WAB=−qλ4πϵ0[ln|(√(L2)2+(r1)2+L2)2(√(L)2+(r1)2+L)(r1)|]WAB=qλ4πϵ0[ln|(√(L)2+(r1)2+L)(r1)(√(L2)2+(r1)2+L2)2|]
Work done in B→C
As movement is done against E⊥ only, we do not consider the presense of E∥.
E⊥=λ4πϵ0r[L2√(L2)2+(r)2+L2√(L2)2+(r)2]E⊥=λL4πϵ0[1r√(L2)2+(r)2]
WBC=∫r2r1(qE⊥(ˆj))⋅(dr(ˆj))WBC=∫r2r1qE⊥dr
WBC=∫r2r1qλL4πϵ0[1r√(L2)2+(r)2].drW_{BC} = \frac{q\lambda\require{cancel}\cancel{L}}{4\pi\epsilon_0}\frac{1}{2\require{cancel}\cancel{L}}[ln|\frac{\sqrt{(\frac{L}{2})^2+(r)^2}-\frac{L}{2}}{\sqrt{(\frac{L}{2})^2+(r)^2}+\frac{L}{2}}|]_{r_1}^{r_2}W_{BC} = \frac{q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}-(\frac{L}{2}))(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(\sqrt{(\frac{L}{2})^2+(r_1)^2}-(\frac{L}{2}))}|]W_{BC} = \frac{q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))^2(r_2)^2}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))^2(r_1)^2}|]W_{BC} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))(r_2)}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(r_1)}|]
Work done in C \rightarrow D

As movement is done against E_{\parallel} only, we do not consider the presense of E_{\bot}.
E_{\parallel} = \frac{\lambda}{4\pi\epsilon_0r_2} [\frac{r_2}{\sqrt{(x)^2+(r_2)^2}} - \frac{r_2}{\sqrt{(L-x)^2+(r_2)^2}}]
W_{CD} = \int_{\frac{L}{2}}^0 (qE_{\parallel}(-\hat{i})) \cdot (dx(\hat{i}))W_{CD} = \int_{\frac{L}{2}}^0 -qE_{\parallel}dxW_{CD} = \int_0^{\frac{L}{2}} qE_{\parallel}dx
W_{CD} = \int_0^{\frac{L}{2}} \frac{q\lambda}{4\pi\epsilon_0} [\frac{1}{\sqrt{(x)^2+(r_2)^2}} - \frac{1}{\sqrt{(L-x)^2+(r_2)^2}}].dxW_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ ln|\sqrt{(x)^2+(r_2)^2}+x| +ln|\sqrt{(L-x)^2+(r_2)^2}+L-x|]_0^{\frac{L}{2}}W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|(\sqrt{(x)^2+(r_2)^2}+x)(\sqrt{(L-x)^2+(r_2)^2}+L-x)|]_0^{\frac{L}{2}}W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]
Work done in D \rightarrow A

As movement is done against E_{\bot} only, we do not consider the presense of E_{\parallel}.
E_{\bot} = \frac{\lambda}{4\pi\epsilon_0r} [0+\frac{L}{\sqrt{(L)^2+(r)^2}}]E_{\bot} = \frac{\lambda L}{4\pi\epsilon_0} [ \frac{1}{r\sqrt{(L)^2+(r)^2}}]
W_{DA} = \int_{r_2}^{r_1} (qE_{\bot}(\hat{j}))\cdot(dr(\hat{j})W_{DA} = \int_{r_1}^{r_2} -qE_{\bot}dr
W_{DA} = \int_{r_1}^{r_2} \frac{-q\lambda L}{4\pi\epsilon_0} [\frac{1}{r\sqrt{(L)^2+(r)^2}}].drW_{DA} = \frac{-q\lambda\require{cancel}\cancel{L}}{4\pi\epsilon_0}\frac{1}{2\require{cancel}\cancel{L}}[ln|\frac{\sqrt{(L)^2+(r)^2}-L}{\sqrt{(\frac{L}{2})^2+(r)^2}+L}|]_{r_1}^{r_2}W_{DA} = \frac{-q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}-(L))(\sqrt{(L)^2+(r_1)^2}+(L))}{(\sqrt{(L)^2+(r_2)^2}+(L))(\sqrt{(L)^2+(r_1)^2}-(L))}|]W_{DA} = \frac{-q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_1)^2}+(L))^2(r_2)^2}{(\sqrt{(L)^2+(r_2)^2}+(L))^2(r_1)^2}|]W_{DA} = \frac{-q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}|]W_{DA} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}|]
Adding Work
W=W_{AB}+W_{BC}+W_{CD}+W_{DA}
W_{AB} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(L)^2+(r_1)^2}+L)(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})^2}|]W_{BC} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))(r_2)}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(r_1)}|]W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]W_{DA} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}|]
W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{\require{cancel}\cancel{(\sqrt{(L)^2+(r_1)^2}+L)}\require{cancel}\cancel{(r_1)}\require{cancel}\cancel{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))}\require{cancel}\cancel{(r_2)}(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^{\require{cancel}\cancel{2}1}\require{cancel}\cancel{(\sqrt{(L)^2+(r_2)^2}+(L))}(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})^{\require{cancel}\cancel{2}}\require{cancel}\cancel{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))}\require{cancel}\cancel{(r_1)}\require{cancel}\cancel{(\sqrt{(L)^2+(r_2)^2}+L)}\require{cancel}\cancel{(r_2)}\require{cancel}\cancel{(\sqrt{(L)^2+(r_1)^2}+(L))}(r_2)}|]W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})(r_2)}|]W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2r_2})^2+1}+\frac{L}{2r_2})}{(\sqrt{(\frac{L}{2r_1})^2+1}+\frac{L}{2r_1})}|]
Conclusion
So if r_1 \neq r_2, then W \neq 0 which indicates that even static electric field behaves non-conservatively in some cases.
This phenomenon is extremely easy to show in hypothetical electric fields as I have shown here.
Theory
Point charge "+q" travels in the electric field of line charge "MN" having linear charge density "+λ" in a square loop "ABCDA".
E⊥=λ4πϵ0r[sinα+sinβ]E∥=λ4πϵ0r[cosα−cosβ]
Work done in A→B
As movement is done against E∥ only, we do not consider the presense of E⊥.
E∥=λ4πϵ0r1[r1√(x)2+(r1)2−r1√(L−x)2+(r1)2]
WAB=∫L20(qE∥(−ˆi))⋅(dx(ˆi))WAB=∫L20−qE∥dx
WAB=∫L20−qλ4πϵ0[1√(x)2+(r1)2−1√(L−x)2+(r1)2].dxWAB=−qλ4πϵ0[ln|√(x)2+(r1)2+x|+ln|√(L−x)2+(r1)2+L−x|]L20WAB=−qλ4πϵ0[ln|(√(x)2+(r1)2+x)(√(L−x)2+(r1)2+L−x)|]L20WAB=−qλ4πϵ0[ln|(√(L2)2+(r1)2+L2)2(√(L)2+(r1)2+L)(r1)|]WAB=qλ4πϵ0[ln|(√(L)2+(r1)2+L)(r1)(√(L2)2+(r1)2+L2)2|]
Work done in B→C
As movement is done against E⊥ only, we do not consider the presense of E∥.
E⊥=λ4πϵ0r[L2√(L2)2+(r)2+L2√(L2)2+(r)2]E⊥=λL4πϵ0[1r√(L2)2+(r)2]
WBC=∫r2r1(qE⊥(ˆj))⋅(dr(ˆj))WBC=∫r2r1qE⊥dr
WBC=∫r2r1qλL4πϵ0[1r√(L2)2+(r)2].drW_{BC} = \frac{q\lambda\require{cancel}\cancel{L}}{4\pi\epsilon_0}\frac{1}{2\require{cancel}\cancel{L}}[ln|\frac{\sqrt{(\frac{L}{2})^2+(r)^2}-\frac{L}{2}}{\sqrt{(\frac{L}{2})^2+(r)^2}+\frac{L}{2}}|]_{r_1}^{r_2}W_{BC} = \frac{q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}-(\frac{L}{2}))(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(\sqrt{(\frac{L}{2})^2+(r_1)^2}-(\frac{L}{2}))}|]W_{BC} = \frac{q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))^2(r_2)^2}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))^2(r_1)^2}|]W_{BC} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))(r_2)}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(r_1)}|]
Work done in C \rightarrow D
As movement is done against E_{\parallel} only, we do not consider the presense of E_{\bot}.
E_{\parallel} = \frac{\lambda}{4\pi\epsilon_0r_2} [\frac{r_2}{\sqrt{(x)^2+(r_2)^2}} - \frac{r_2}{\sqrt{(L-x)^2+(r_2)^2}}]
W_{CD} = \int_{\frac{L}{2}}^0 (qE_{\parallel}(-\hat{i})) \cdot (dx(\hat{i}))W_{CD} = \int_{\frac{L}{2}}^0 -qE_{\parallel}dxW_{CD} = \int_0^{\frac{L}{2}} qE_{\parallel}dx
W_{CD} = \int_0^{\frac{L}{2}} \frac{q\lambda}{4\pi\epsilon_0} [\frac{1}{\sqrt{(x)^2+(r_2)^2}} - \frac{1}{\sqrt{(L-x)^2+(r_2)^2}}].dxW_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ ln|\sqrt{(x)^2+(r_2)^2}+x| +ln|\sqrt{(L-x)^2+(r_2)^2}+L-x|]_0^{\frac{L}{2}}W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|(\sqrt{(x)^2+(r_2)^2}+x)(\sqrt{(L-x)^2+(r_2)^2}+L-x)|]_0^{\frac{L}{2}}W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]
Work done in D \rightarrow A
As movement is done against E_{\bot} only, we do not consider the presense of E_{\parallel}.
E_{\bot} = \frac{\lambda}{4\pi\epsilon_0r} [0+\frac{L}{\sqrt{(L)^2+(r)^2}}]E_{\bot} = \frac{\lambda L}{4\pi\epsilon_0} [ \frac{1}{r\sqrt{(L)^2+(r)^2}}]
W_{DA} = \int_{r_2}^{r_1} (qE_{\bot}(\hat{j}))\cdot(dr(\hat{j})W_{DA} = \int_{r_1}^{r_2} -qE_{\bot}dr
W_{DA} = \int_{r_1}^{r_2} \frac{-q\lambda L}{4\pi\epsilon_0} [\frac{1}{r\sqrt{(L)^2+(r)^2}}].drW_{DA} = \frac{-q\lambda\require{cancel}\cancel{L}}{4\pi\epsilon_0}\frac{1}{2\require{cancel}\cancel{L}}[ln|\frac{\sqrt{(L)^2+(r)^2}-L}{\sqrt{(\frac{L}{2})^2+(r)^2}+L}|]_{r_1}^{r_2}W_{DA} = \frac{-q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}-(L))(\sqrt{(L)^2+(r_1)^2}+(L))}{(\sqrt{(L)^2+(r_2)^2}+(L))(\sqrt{(L)^2+(r_1)^2}-(L))}|]W_{DA} = \frac{-q\lambda}{8\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_1)^2}+(L))^2(r_2)^2}{(\sqrt{(L)^2+(r_2)^2}+(L))^2(r_1)^2}|]W_{DA} = \frac{-q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}|]W_{DA} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}|]
Adding Work
W=W_{AB}+W_{BC}+W_{CD}+W_{DA}
W_{AB} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(L)^2+(r_1)^2}+L)(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})^2}|]W_{BC} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))(r_2)}{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))(r_1)}|]W_{CD} = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^2}{(\sqrt{(L)^2+(r_2)^2}+L)(r_2)}|]W_{DA} = \frac{q\lambda}{4\pi\epsilon_0}[ln|\frac{(\sqrt{(L)^2+(r_2)^2}+(L))(r_1)}{(\sqrt{(L)^2+(r_1)^2}+(L))(r_2)}|]
W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{\require{cancel}\cancel{(\sqrt{(L)^2+(r_1)^2}+L)}\require{cancel}\cancel{(r_1)}\require{cancel}\cancel{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+(\frac{L}{2}))}\require{cancel}\cancel{(r_2)}(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})^{\require{cancel}\cancel{2}1}\require{cancel}\cancel{(\sqrt{(L)^2+(r_2)^2}+(L))}(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})^{\require{cancel}\cancel{2}}\require{cancel}\cancel{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+(\frac{L}{2}))}\require{cancel}\cancel{(r_1)}\require{cancel}\cancel{(\sqrt{(L)^2+(r_2)^2}+L)}\require{cancel}\cancel{(r_2)}\require{cancel}\cancel{(\sqrt{(L)^2+(r_1)^2}+(L))}(r_2)}|]W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2})^2+(r_2)^2}+\frac{L}{2})(r_1)}{(\sqrt{(\frac{L}{2})^2+(r_1)^2}+\frac{L}{2})(r_2)}|]W = \frac{q\lambda}{4\pi\epsilon_0} [ln|\frac{(\sqrt{(\frac{L}{2r_2})^2+1}+\frac{L}{2r_2})}{(\sqrt{(\frac{L}{2r_1})^2+1}+\frac{L}{2r_1})}|]
Conclusion
So if r_1 \neq r_2, then W \neq 0 which indicates that even static electric field behaves non-conservatively in some cases.
This phenomenon is extremely easy to show in hypothetical electric fields as I have shown here.
No comments:
Post a Comment